
End-to-End Open-source Collaboration
Guidance

Data Visualisation & Open Source Technology Working Group

PHUSE Working Group

This whitepaper provides guidance on the use of Open-Source Software (OSS), as well as col-
laboration on and creation of open-source projects used by data scientists in clinical reporting
workflows

Table of contents

Guidance scope and purpose 4

Definitions 5

1 Open source: the what and why 6

2 Using open-source 8
2.1 Open-source health . 8
2.2 Understanding an open-source project . 8

2.2.1 The community behind a project . 8
2.3 Finding open-source projects . 11
2.4 Balancing extending vs creating . 12
2.5 Understanding the risks of using open-source 12

2.5.1 Tools that help document risk in R packages 13
2.6 The impact of different licences . 13

3 Releasing open source 14
3.1 Types of intellectual property . 14
3.2 Preparing for release . 15

3.2.1 Timing of releases relative to project lifecycle 15
3.2.2 Impact of where you host a project . 15
3.2.3 Moving from inner sourced to open source 16

3.3 Avoiding the misuse of other intellectual property 16
3.4 Mitigating reputational risks . 17
3.5 Licences for releasing code . 17
3.6 Common governance models . 18
3.7 The role of contracts in inter-company open-source ollaboration 19

3.7.1 Annotated examples of the role of contracts in open-source projects . . 19
3.8 Liability to users . 20

4 Contributors 21

References 22

Slides 23
PHUSE EU 2023 . 23

3

Guidance scope and purpose

The primary aim of this collaboration is to provide guidance within the context of how open
source is relevant to PHUSE members, and link out to more information to avoid duplication
on more generalisable topics. In this guidance, R packages are referenced as an example OSS
project that is a focal point today in clinical reporting, but the principles extend to other
libraries in python, julia, javascript, and more. The following topics are covered in this white
paper:

Using open source

• Relevance of different licence types
• Watchouts on governance models and assessing risk
• Landscape of tools available for vulnerability detection, validation, qualification, risk and

enforcing licence policies, with particular reference to R-specific tools

Releasing open-source

• A summary and recommendation of licence types, noting permissive vs copyleft licences
and the ramifications on code built on top of your project

• Relevance of licences present in dependencies, direct vs transitive dependencies, and the
issues around compiling with dependencies that could occur in something like a public
shiny app

• Landscape of places to place open-source projects and build collaborative communities
• Pros/benefits and cons/risks for companies to open-source clinical reporting codebases
• Governance models for open-source projects with reference to their use today across

clinical reporting collaborations
• Summary of contract types present where intellectual property and copyright is shared

between companies
• Tools available to understand the general health of projects, with specific reference to R

extensions
• Tools for releasing and maintaining projects, with particular reference to tools for R

packages

4

Definitions

Abbreviation Description
CLA Contributor licence Agreement. Has a

similar purpose to a DCO (Developer
Certificate of Origin).

CSR Clinical Study Report
eCRF electronic Case Report Form
GPL GNU General Public Licence
MIT Common acronym for a licence released by

the Massachusetts Institute of Technology
OS Open-Source
OSS Open-Source Software
IP Intellectual Property

5

1 Open source: the what and why

‘Open-source’ software is software covered by a license that legally allows access and inspection
of the software’s source code. The many varieties of open-source licenses determine what you
can then do with the software’s source code, i.e. copy, modify, contribute or redistribute. Being
able to view and then do something with source code wasn’t always so. The term ‘open-source’
has been in use at least since the 1990’s (Christine Peterson 2018) and the principles behind
the term pre-date computer software. Thus, as long as there has been source code there have
been efforts to make it ‘open-source’.

As computing systems became widely adopted in universities and beyond, the value of freely
accessing the IT’s source code became apparent. This effort was described as making software
‘free’ by Richard Stallman and formalised by the creation of the Free Software Foundation
in 1985, including the creation of a legally enforceable licenses (the GNU Public License) to
enshrine source code as ‘free’, that is, having the freedom to access. Although this effort was
the genesis of today’s open-source communities, many people mistakenly understood ‘free’ to
mean gratis, which was incorrect: most open-source licenses allow the software to be sold for
a fee (OSI 2018). As is the case, even if the main goal of open source is not creating software
gratis, it so happens that the majority of open-source software is made available at no cost.
Regardless of whether it is sold for a fee or not, the term ‘open-source’ is the preferred term
by most with respect to software with a license that allows access to the source code.

Readers coming from the pharmaceutical industry probably perceive a contradiction here:
how can software which is typically gratis to use, have any intrinsic value to either business
or private users? Fair enough: this industry depends on capital investment which then de-
pends on retaining the details of their drugs and production secret. The difference lies in the
utility of (some) software, versus, in this example, a drug or therapy. Certain categories of
software enable the creation of new value. Obvious examples being programming languages en-
abling creation of specialized applications which can support a specific business process, e.g. C,
Python, R and many others. The ability to use and improve these open source languages freely
accelerate in multiple dimensions the ability to create business value, e.g. specialized smart
phone apps that offers a service to end-users. Imagine if you have an idea for a smart phone
app, but before you can write a line of code, you need to buy a license to install that language.
And after investing the time and money to access this language you realise it doesn’t work as
well as you need for your particular app. Or worse yet, it has a bug which renders it unfit for
your purpose. Little chance you can resolve this quickly. Open-source software does not have
these restrictions so you can focus all your resources on end-user value, not the tools needed
for creation.

6

Open-sourcing software solutions is also a mindset approach. As you use available open-source
code, you are using bits and pieces to create a piece of software/analytics that is greater than
the individual parts. By open-sourcing your solution, you give others the opportunity to build
on top of your work, as well as improve your work itself by contributing. Ultimately, this
comes back around to yourself: What you have available at your disposal is now greater, than
if you worked in a silo.

Open-source is also a step towards ensuring reproducibility. Consider an analysis done in
a propriety language by a pharmaceutical company. An academic accessing the same data
through a data sharing initiative may find results that contradict those done using the propriety
tool. Such a researcher would not be able reproduce the results nor investigate the source of
the discrepancy—and in fact any attempt to reproduce results is dependent on the for-profit
company providing a license to generate that insight (Bruno Rodrigues 2022).

The drugs and therapies manufactured by the pharmaceutical industry are the equivalent of
a smart phone app: they provide end-user value. It’s sound business logic to open source the
tools used to create these products: remove the restrictions to creating drugs and enable each
company to sharpen their focus on developing and delivering them.

7

2 Using open-source

The following section is a non-exhaustive discussion of topics relevant when using open-source
data science projects.

2.1 Open-source health

The communities that maintain and build open-source packages are diverse, and there are no
set conventions on how they are maintained, resourced, and governed. There are no universal
metrics to determine if an OS project is ‘healthy’. Health indicators such as project activity,
apparent use, clear governance, and active maintainers are just that.

A project with no activity for years, for example, might be simply be considered ‘done’ and
not necessarily because the project has been abandoned/superseded. ‘Done’ in the sense of
being stable and feature complete perhaps due to a small and well-defined scope.

2.2 Understanding an open-source project

Many, but not all, open-source projects are on github.com or gitlab.com. On github.com,
every repo contains a tab called Insights, from where you can see information on the people
who contributed lines of code to a project. Of a particular interest might be the Contributor
tab within Insights, an example screenshot of the dplyr R package contributor page is in
Figure 2.1.

Some sites like openpharma.pharmaverse.org (specific to R and python packages in pharma)
and OSS Insights; powerful tool for any project on GitHub) also provide more specific insights
into the community engagement behind each project hosted on github.com.

2.2.1 The community behind a project

The activity on a project alone does not tell you the quality and extent of use of a project.
Two examples are:

8

https://github.com
https://gitlab.com
http://openpharma.pharmaverse.org
https://ossinsight.io/
https://github.com/

Figure 2.1: Screenshot from Insight tab for the dplyr R package

9

• A project could have almost no active community in terms of recent contributions or
response to issues, much like the R package survival, yet be a stable and critical
package in R installations.

• A project could also have no activity as it has been abandoned after or before it reached
v1.0.

The community behind a project is also not limited to the people that contribute code. Users
can also engage with a project via giving feedback via mechanisms like GitHub issues, emailing
authors or engaging in discussions on GitHub issues. Figure 2.2 is an example of an issue page
for the teal R package. The figure shows that teal has 24 open issues, and 266 closed issues.
Small speech bubbles on the right of the figure show discussion have occurred on some issues.

Figure 2.2: An example screenshot of the R package teal’s issue page

By looking through issues, subjective impressions on community health can be made. Is it a
few people giving feedback and one person developing? Does it have stale issues no-one replies
to? Or does it have a lively community engaged in discussion and coordination?

Packages can also be open sourced without having the place they develop the code exposed
to the general public. An example is the randomForest package, which is an open sourced
(GPL-2/3) R package where the source code of the releases is open sourced for use, but the
package authors do not give users access to view the place where they develop code. This does
not mean the quality of the code is inferior, but does indicate there is an additional barrier to
engaging with the package development as the first step would be to contact the authors.

10

https://github.com/therneau/survival
https://www.stat.berkeley.edu/~breiman/RandomForests/

Some things to consider when trying to establish the activity of a community are:

• How many individuals contributed to the project?
• What is the spread in contributions? What is the size of the ‘core’ group that contribute

the majority of the code? What is the spread of commits—is it highly skewed to 1 or 2
people contributing?

• What is the recent and trends in commit activity? Is it currently active, formerly or is
yet to become active?

• How many open and closed issues are there? If it’s a low number, is that in line with
the age and expected use of the project?

• Are there ‘stale’ open issues, where issues remain open for months or years? Are many
of these stale issues with comments, suggesting some discussion, or absent of comments
suggesting there is no feedback loop present between issues and the codebase? A thing
to also look for is whether closed issues are resolved, as some projects use bots to auto-
matically close stale issues.

2.3 Finding open-source projects

Numerous methods exist to find projects. Specific to R projects, the following sources exist:

• pharmaverse.org: opinionated/curated effort to provide end-to-end tools for clinical re-
porting.

• openpharma.pharmaverse.org: un-opinionated tracker of packages built by pharma for
pharma use cases. It also and indexes and provides package metadata in a dashboard,
and provides metadata to pharmaverse.org.

• The R universe hosts ecosystems of packages in CRAN-like repositories. As an example,
the pharmaverse has the ‘bleeding edge’ of the main branches of all included R package
available as a CRAN-like repository.

• rseek.org: Google filter for R relevant content.

• rinpharma.com/publication: the proceedings of the R/Pharma conference contain many
relevant projects.

• ROpenSci: maintains a list of packages they have vetted through their software review
process, and they also categorise the packages by domain.

11

http://pharmaverse.org
http://openpharma.pharmaverse.org
https://r-universe.dev/search/
https://pharmaverse.r-universe.dev/builds
http://rseek.org
http://rinpharma.com/publication
https://ropensci.org/packages/all/
https://ropensci.org/packages/

2.4 Balancing extending vs creating

Using R packages as an example, if your analysis plan requires creating a Kaplan-Meier plot,
you could implement this using open code you program using R base plotting functions. Alter-
natively, you could introduce a dependency on a package that provides that functionality as a
parameterised function, like survminer, visR or tern. Occasionally an existing package may
be missing a feature you want, as can be derived from the presence of at least 3 R packages
with a Kaplan-Meier plotting function. In such cases, you may need to extend, or start a new
package.

When an existing tool is not a perfect fit, it can be difficult to decide whether to extend an
existing package, or whether it may be worth starting a new one. Some resources to help
understand how to contribute to a new package are:

• A blog post by Jim Hester on contributing to the tidyverse
• Many packages have a CONTRIBUTING.md file, or mention in the README.md, how

you can contribute. They may also be a dedicated tag for issues discussing new features
(e.g. 'enhancements').

2.5 Understanding the risks of using open-source

Risk can come from several domains including;

• Security, e.g. it has malicious code or inadvertently opens vulnerability.
• Quality, the package has poor documentation and code is unreliable.
• Accuracy, the package does not correctly reference what it does, or implements it incor-

rectly.

The R validation hub is a pan-pharma organisation, that aims to coordinate between pharma
companies how the validation (and by extension risk assessment) in R packages is undertaken
and documented. Of particular relevance is the Case Studies repository, which contains exam-
ples from Roche, Merck and Novartis (as of January 2023) on how they approach validation
and risk mitigation. The R Validation Hub also created riskmetric as a tool to extract
metrics relevant to validation, and is continuing work on the Risk Assessment App, which
aims to provide an application that will surface these metrics to a user to help evaluate an R
package.

A potentially critical future resource is also the R Validation Hub’s regulatory R package
working group. This group has the following goal:

This working group strives to identify and prototype at least one technical frame-
work that can support a transparent, open, dynamic, cross-industry approach of

12

https://github.com/kassambara/survminer/
https://github.com/openpharma/visR/
https://github.com/insightsengineering/tern/
https://www.tidyverse.org/blog/2017/08/contributing/
https://pharmar.org
https://github.com/pharmaR/case_studies
https://www.pharmar.org/risk/
https://github.com/pharmaR/risk_assessment
https://pharmar.github.io/regulatory-r-repo-wg/

establishing and maintaining a ‘repository’ of R packages with accompanying ev-
idence of their quality and the assessment criteria, that can be used to simplify
necessary in-house validation processes as much as possible.

2.5.1 Tools that help document risk in R packages

Two toolsets have been released specifically for R packages, which differ in their underlying
philosophy.

• Roche has also open sourced a github-action called thevalidatoR, which is available on
Github Marketplace, which will generate a PDF with the unit testing results, as well as a
traceability matrix of documentation against tested functionality in a specified container.
The core belief in this approach is that a package that is well documented with Roxygen
tags and testthat unit tests provides the necessary information to validate a package
implements it’s documented features.

• valtools from Fred Hutchinson Cancer Center places the logic for the validation doc-
umentation within the R package as a vignette, where the user manually adds the re-
quirements and test cases.

The two approaches differ in their stance on what information should be added to a package
vs already exists, but ultimately both aim to capture information that can be used to create
necessary evidence for validation.

The oysteR R package can help scan R projects for known vulnerabilities via a REST API
interface into the vendor tool OSS Index from sonatype.

2.6 The impact of different licences

The licence of projects you depend on, particularly if you incorporate the source code into
your compiled/shared product, can have drastic effects on what you can do with your project.
It is always important to seek in-house counsel advice on your companies position on different
licence types.

As a general guidance:

• There are permissive licences that allow people to use a project in almost any way,
through to copy-left licences that prevent distributing and, in some cases, monetizing
any project that incorporates the dependency into its codebase.

• Two key resources to understand licence types are https://choosealicense.com/ and https:
//opensource.org/licenses.

13

https://github.com/marketplace/actions/r-package-validation-report
https://github.com/marketplace/actions/r-package-validation-report
https://phuse-org.github.io/valtools/index.html
https://github.com/sonatype-nexus-community/oysteR
https://choosealicense.com/
https://opensource.org/licenses
https://opensource.org/licenses

3 Releasing open source

Without open-source, many of the R packages we use today would never have developed or
would be kept behind company firewalls. Open-source provides a mechanism for code sharing
and collaboration, which in turn means talent can flow from company to company across our
industry, we prevent duplication of the same post-competitive tools, and we move closer to
decrease the burden on reviewers by bringing consistency in both our code and outputs in a
submission.

Within the context of clinical reporting, we are often focussed on the benefit of inter-company
collaboration on packages in the clinical domain. It is important to note though that there
is already a strong track record of open source tools supported by Pharma having an impact
on data science beyond our industry, examples include Pfizer and caret(Max Kuhn 2010),
Eli Lilly and targets(Will Landau 2022) and Genentech/Roche and the R language (Ashlee
Vance 2009; Michael Lawrence 2018).

3.1 Types of intellectual property

Intellectual Property (IP) is often bucketed into pre-competitive and competitive IP (Contr-
eras 2016), with post-competitive being a less established term we will define in this guidance.
In clinical reporting, we place significant resources into the collection and presentation of in-
formation that was collected on our competitive IP in confirmatory clinical trials. In order to
help separate this simpler case from pre-competitive—here we define as post-competitive in
clinical reporting as a unique scenario of code that takes data generated as part of confirma-
tory studies (e.g. a Phase III trial) and creates an output. Post-competitive IP is where the
benefits of open sourcing and encouraging between company collaboration can be more clearly
differentiated from potential competitive advantage in developing new medicines.

The following summarizes the three types of IP:

Pre-competitive IP which is not a competitive advantage. This can be a complex definition,
and will require guidance from company council. For instance, data standards may
clearly be pre-competitive, but for anonymised data from historical trials, or an algorithm
that generates risk scores for a certain outcome could provide a competitive advantage,
or be defined as pre-competitive.

14

Competitive IP Relevant examples in clinical reporting would be information on a new target,
molecule or algorithm that provides an advantage in the creation of new medicines, or
as a standalone data product that can be monetized.

Post-competitive IP A less common term we have defined to be where code collaboration im-
proves the efficency of insights, rather than the creation of insights that would otherwise
not be possible. In the context of PHUSE collaborators, this includes packages that take
CDISC data and apply templated data steps and visualizations to prepare a CSR, like
those seen in the pharmaverse.

3.2 Preparing for release

3.2.1 Timing of releases relative to project lifecycle

As a general rule arising IP (Law Insider 2022), that is IP generated as part of the project,
is simpler to handle than background IP that already exists. There is often a benefit to
define what you want to do, decide if it would be open sourced, and if so, start it in an
open-source setting. This also helps to encourage defining a clear scope from day one, and
encourage others to engage early rather than initiate additional projects that later may not
be compatible without significant re-factoring.

3.2.2 Impact of where you host a project

What are the differences between GitHub organizations that host packages like phuse-org,
rinpharma, ropensci, openpharma, pharmaverse, pharmar, personal organisations, company
owned organisations and organisations created to host a single project?

Ultimately, the licence chosen has an impact on how a package can be used, rather than the
location the code is shared from. The location though can influence how a project is perceived.
If it is hosted on a GitHub organisation with the name of a pharma company, relative to
a pan-company organisation, it may imply that the project is ‘Company A’s’ project rather
than something they wish to co-create. As a general rule, the recommendation would be to
place it in a company’s organisation if you wish to remain control of the roadmap, but look to
pan-company organisations if you wish to co-create and co-own the packages trajectory. Some
examples are;

• Personal Github orgs

– diffdf (gowerc/diffdf) and survival (therneau/survival) are examples of two reposi-
tories used in pharma hosted in Github orgs belonging to a specific individual.

• Project/Initiative Github orgs

15

https://pharmaverse.org/
https://github.com/phuse-org
https://github.com/rinpharma
https://github.com/ropensci
https://github.com/openpharma
https://github.com/pharmaverse
https://github.com/pharmar
https://github.com/gowerc/diffdf
https://github.com/therneau/survival

– openpharma: Open pharma is goverened by the non-profit Open Source in Pharma
and will house packages that do not want to be associated with a specific company
or organisation.

– pharmaverse: A sub-set of the pharmaverse clinical reporting repositories are also
hosted on the pharmaverse Github org.

– pharmaR: Houses repositories from the R Validation Hub working group.

• Company Github orgs

– Many companies maintain Github orgs either at the company or department in a
company level, like GSK-Biostatistics, Roche, Genentech, Novartis, Merck

• Organisation Github orgs

– phuse-org: PHUSE projects and working groups from PHUSE.
– ropensci, ropenscilabs, ropensci-docs, etc: rOpenSci maintains several GitHub orgs,

with rOpenSci housing mature R packages contributed by their staff, or peer-
reviewed.

3.2.3 Moving from inner sourced to open source

If a package started its development on an internal git server, or a private repository on
github.com, there could be some risk of exposing data either in issues, or historical commits.
These could range from screenshots of patient data, tables or other business confidential in-
formation in issues, to passwords or files in the git commit history that were deleted but not
purged. The recommendation is to always flatten the commit history, and wipe issues by
starting a new git repository when open sourcing unless you are certain no information can be
leaked.

3.3 Avoiding the misuse of other intellectual property

When discussing the open sourcing of a codebase, it is important to flag to internal counsel
existing external projects, and the overlap of scope with the project you intend to release.

It is possible that decisions made during development can become license liabilities. You may
at first think it’s unlikely someone would copy and paste code into an already open sourced
project, but as an example of a plausible scenario that has been seen by at least one guidelines
author; a team need to implement a new function in an internal codebase. This function exists
in another GPL-3 copy left licenced project. To add that project would introduce multiple
dependencies that aren’t used by that particular function so a member of the team decides to
copy the function into the package. Then the package is later open sourced under MIT, but
the copy and pasted code is ‘forgotten about’. This would be a license breach as the authors

16

https://github.com/openpharma
http://opensourceinpharma.com/
https://github.com/pharmaverse
pharmaR
https://github.com/GSK-Biostatistics
https://github.com/Roche
https://github.com/Genentech
https://github.com/Novartis
https://github.com/Merck
https://github.com/phuse-org
https://github.com/ropensci
https://github.com/ropenscilabs
https://github.com/ropensci-docs

have re-released copy-left code as permissive, and have incoporated the code without flagging
it’s source, changes they made, and the original licence (GPL3 requirements).

The risk on already open sourced projects can also be lessened by a Contributor Licence
Agreement (CLA; see the bot contributor-assistant for an example of CLA automation). A
CLA helps ensure that anyone contributing to a project acknowledges specific terms expected of
contributions, like the contributions are novel code and the author will abide by the projects
licence terms. In the absence of a CLA it is important to ensure that all code within the
package is original, and there is no culture of cannibalising external code and infringing on
people’s copyright within the development team.

3.4 Mitigating reputational risks

What are the expectations when I release a package? Are there risks to my company’s brand
having abandoned non-maintained packages?

In this guidance it is suggested to open-source early, yet doing so could expose projects that are
not ready for use, might be cancelled before reaching v1.0 or are never successfully adopted.
The ratio of failed to successful projects is an important consideration, but a skew in that
ratio being a negative indicator can be mitigated if repositories are clear on what stage of
the product life cycle they are at and make use of tools to inform users if a project has been
deprecated, or are looking for new maintainers to take over the project.

While transperancy on lifecycles can help to ensure no negative reactions come from early soft-
ware, robust software can have a positive effect on how others view your project. ROpenSci’s
statistical software review guide includes many recomendations for reviewers that you can also
take and apply to your software as you prepare for a version 1.0 release. The r-pks.org guide
by Hadley Wickham also contains many of the best practices users may expect in a modern
R package.

3.5 Licences for releasing code

Ultimately, the licence used for a project would require in-house counsel guidance on what
licence is preferred.

All code open-sourced should have a licence. The licence has a standard location of being a
text file called ‘LICENSE’ in the root of the project folder, a text file called ‘LICENSE.txt’, or
a markdown file called ‘LICENSE.md’. Of particular note is that R packages often have the
licence specified in the R specific location of the DESCRIPTION file, or may have it in both
the standard and R specific locations (in rare cases these can also contradict so it is important
to read both).

17

https://github.com/contributor-assistant/github-action
https://lifecycle.r-lib.org/
https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories
https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories
https://stats-devguide.ropensci.org/
https://stats-devguide.ropensci.org/
https://r-pkgs.org/

Generally, permissive licences are more common in clinical reporting, with the majority of
pharmaverse R packages using an MIT or Apache 2.0 license. These licences allow distribution,
commercial use and modification. One primary difference between MIT and Apache 2.0 is
that the latter has patent protection language and rules around trademark usage, and may be
preferred in larger projects due to its focus on more explicitly spelling out the terms.

As a general guidance, if the purpose of the project is to let future contributors freely use the
code, MIT license is a concise permissive license to adopt. In the pharmaceutical industry,
however, the patent of the code is often of concern in a post-competitive environment across
companies, and thus an Apache 2.0 license could be more suitable. On the other hand, the
copyleft license (e.g. GPLv2, GPLv3) demands any downstream derivatives to follow the same
copyleft license of the source project and generally should be avoided. Sometimes, a company’s
legal team might come up with their own license that is not listed as one of the approved open-
source licenses. It is highly recommended to only use standard open-source licenses, as these
are verified by the Open-Source Initiative, so others can easily understand the governance
model of your project.

A licence is ideally one of the first commits made at project initiation, because a change in
the license could impact many aspects of the project. With a permissive license, others have
been granted permission to license modification from its inception. When under a permissive
license, you could change to a license with more requirements, but this would not rescind the
historical codebase that has a more permissive license.

3.6 Common governance models

Open-sourcing a project allows others to leverage the code, but the ultimate goal is often that
the open-source community adopts and helps extend and evolve the project. How projects
govern this shared development is diverse. A commonality across all projects is that the repos-
itory, and it’s main/production branch, will have some form of write access control, meaning
a level of governance is present even if it’s not formalised.

There is no definitive definition of open-source governance models. The following models
are based on mapping Redhat, opensource.com and Linux Foundation notes to the packages
relevant to clinical reporting.

Single Entity This category refers to a project where a single entity is the final decision maker,
regardless of whether that single entity is an individual, a company or other legal en-
tity. This governance model is sometimes referred to as the “privately open source”,
“founder-leader”, or “benevolent dictator” model. The single entity controls which pull
requests go to master and provides instruction on how new code should integrate in
order to be accepted. Famous examples are Python until 2018 and Linux. Within phar-
maverse.org, diffdf and many of the single company governed packages are an example
of this governance model.

18

https://choosealicense.com/licenses/mit/
https://choosealicense.com/licenses/apache-2.0/
https://www.redhat.com/en/blog/understanding-open-source-governance-models
https://opensource.com/article/20/5/open-source-governance
https://www.linuxfoundation.org/tools/open-source-reading-list/

Steering Group This category refers to a project where the ultimate decision-making capacity
is shared between more than one entity. The structure of the group and manner in which
the group makes decisions can vary. The name used to refer to the group can also vary,
examples include “governing board”, “steering group”, and “council”. A famous example
includes the relatively oligarchical Python Steering Council from 2018, however many
projects prefer simple democracies, or merely that a specific number of approvals from
among the contributing entities are required to approve acceptance to the production
branch. Within pharmaverse.org, admiral is an example of this governance model.

Do-ocracy This category refers to a project where access to the production branch is given
out fairly freely, usually based on prior interactions with the primary contributors, or
actual contributions via external pull requests. Trust is placed in the community to
come to an agreement regarding acceptance to the production branch. This category
is sometimes also referred to as a “self-governed” or “non-governed” governance model.
Within pharmaverse.org, visR is an example of this governance model.

Foundation governed A legal body (e.g., non-profit) assumes control - an example organisa-
tion is the Linux Foundation which governs many projects, while in pharma there are
parallels to efforts like Transcelerate and OHDSI. There are no examples of this model
within pharmaverse.org, but R/Pharma repositories do follow this model, where the
registered non-profit Open Source in Pharma governs the github organisation.

3.7 The role of contracts in inter-company open-source ollaboration

Contributions to open-source code can come in many forms, and there is a great deal of diversity
in projects relevant to clinical reporting. This is an emerging area for pharma companies, and
so we will focus on promoting awareness, rather than giving firm guidelines.

3.7.1 Annotated examples of the role of contracts in open-source projects

When initiating a project like an R package, or when another company is considering investing
in collaboration to an existing project, there could be a discussion on having a legal framework
layered on top of the collaboration. To help contextualise this, we will use four example
projects.

dplyr The dplyr package is a ubiquitous in pharma, but is a generic data science package for
data munging. The code owners are listed as individuals from a vendor, academia and
a consultancy and it’s released under a permissive license. This package is extensively
consumed, and a core dependency in data related packages like admiral. This package
is heavily depended on pharma, but no legal agreement exists beyond the permissive
licencing on the project.

19

gt There is a large spread of table generation packages in pharma, but several pharma com-
panies, including Roche and GSK, have publicly been exploring extensions that would
allow the use of gt in TLG generation for CSRs. No legal agreement exists beyond the
permissive licencing on the project.

pkglite Submitting code to the FDA requires collapsing the contents into text files with restric-
tive formats. pkglite exists to collapse and reconstitute an R package before and after
the eCTD submission portal. pkglite uses a copy-left license, and copyright is owned by
Merck. No legal agreement exists beyond the copy-left licencing on the project.

admiral admiral is an R package for creating ADaM datasets. The copyright is held between
Roche and GSK, and it is permissively licensed. A contract exists between Roche and
GSK on their collaboration model. Other companies have contributed and offered to
extend admiral without legal contracts in place on the original codebase.

The examples above were intended to highlight that the majority of R packages used by pharma
companies are done so without legal contracts in place, beyond the license of the project, even
when some collaboration takes place.

It remains a discussion point though whether licenses are required, and the decision to create
a license may become relevant if companies want to formally pool resources. It’s important
to note that with permissively license projects, it is possible that if two entities want to take
a package in different directions, they are able to by forking the project. So, contributions to
another entities package are not lost to the contributing company.

3.8 Liability to users

One open question is often how does open-sourcing open a company up to liability, indemnity
and warranties. We previously discussed CLA bots, as a mechanism to reinforce the need
for contributions to be original, and never cannibalised from another project. For remaining
risks from others using an open sourced codebase, licenses will include some language. As an
example, 50% of the MIT license is devoted to this topic with the following working:

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

20

https://github.com/rstudio/gt/issues/857
https://github.com/rstudio/gt/issues/1212

4 Contributors

We’d like to thank the following people that have contributed initial content or revisions, in
alphabetical order:

Anders Bilgrau, Novo Nordisk

Estella Dong, Bayer

James Black, Roche (co-lead)

Karl Brand, Bayer

Keaven Anderson, Merck

Michael Stackhouse, Atorus Research (co-lead)

Phil Bowsher, Posit

Ross Farrugia, Roche

Ryan Johnson, Posit

Samir Parmar, Pfizer

Tobias Krøgholt, Novo Nordisk

21

References
Ashlee Vance. 2009. “Data Analysts Captivated by r’s Power.” New York Times.
Bruno Rodrigues. 2022. “Open Source Is a Hard Requirement for Reproducibility.” https:

//www.brodrigues.co/blog/2022-11-16-open_source_repro/.
Christine Peterson. 2018. “How i Coined the Term Open Source.” https://opensource.com/

article/18/2/coining-term-open-source-software.
Contreras, Jorge. 2016. “Pre-Competition.” North Corolina Law Review 95 (1): Article 3.
Law Insider. 2022. “Arising Intellectual Property Definition.” https://www.lawinsider.com/

dictionary/arising-intellectual-property.
Max Kuhn. 2010. “The Caret Package: A Unified Interface for Predictive Models.”
Michael Lawrence. 2018. “Michael Lawrence - r-Core/Bioconductor Core Role at Genentech.”

https://www.linkedin.com/in/michael-lawrence-74a9b482/.
OSI. 2018. “History of the OSI.” https://opensource.org/history.
Will Landau. 2022. “The targets r Package User Manual.” https://books.ropensci.org/

targets/.

22

https://www.brodrigues.co/blog/2022-11-16-open_source_repro/
https://www.brodrigues.co/blog/2022-11-16-open_source_repro/
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software
https://www.lawinsider.com/dictionary/arising-intellectual-property
https://www.lawinsider.com/dictionary/arising-intellectual-property
https://www.linkedin.com/in/michael-lawrence-74a9b482/
https://opensource.org/history
https://books.ropensci.org/targets/
https://books.ropensci.org/targets/

Slides

PHUSE EU 2023

The following slides were shared at PHUSE EU 2023, as the official launch of this guidance
document.

23

https://phuse-org.github.io/E2E-OS-Guidance/slides/eu23

	Guidance scope and purpose
	Definitions
	Open source: the what and why
	Using open-source
	Open-source health
	Understanding an open-source project
	The community behind a project

	Finding open-source projects
	Balancing extending vs creating
	Understanding the risks of using open-source
	Tools that help document risk in R packages

	The impact of different licences

	Releasing open source
	Types of intellectual property
	Preparing for release
	Timing of releases relative to project lifecycle
	Impact of where you host a project
	Moving from inner sourced to open source

	Avoiding the misuse of other intellectual property
	Mitigating reputational risks
	Licences for releasing code
	Common governance models
	The role of contracts in inter-company open-source ollaboration
	Annotated examples of the role of contracts in open-source projects

	Liability to users

	Contributors
	References
	Slides
	PHUSE EU 2023

